Super 23® 175 and 195 Cylinder Heads for the Small Block Chevrolet

Thank you for purchasing Trick Flow Super 23 175 and 195 Small Block Chevrolet aluminum cylinder heads. Please follow the steps outlined in this instruction manual to ensure that the installation of your new cylinder heads is done correctly and that they perform according to design.

Please read all of the enclosed information before beginning any work. If you have any questions regarding installation or the written materials supplied with your new heads, contact the Trick Flow technical department at 1-330-630-1555 for assistance, Monday through Friday from 9:00 am to 5:00 pm ET.

Project Overview
- Review all paperwork included in the installation packet
- Inspect the condition of all components
- Verify the part numbers and quantities of each product received (see Parts Checklist below)
- Mail the warranty card to Trick Flow
- Locate recommended tools
- Purchase any additional parts needed (See Additional Parts Required section-Do not purchase pushrods until the proper length is determined)
- Remove existing cylinder heads
- Clean and inspect the engine block
- Check header fitment to cylinder head on a workbench
- Verify that the temperature sending unit fits; locate an adapter if needed
- Check piston to valve clearance
- Check pushrod length
- Purchase the appropriate pushrods
- Install the new cylinder heads
- Adjust the valvetrain
- Make tuning adjustments
- Perform a proper break-in
- Test drive and enjoy!

Parts Checklist
You should have received the parts listed here. Please verify the part numbers and quantities of each component received.
- (1) Assembled cylinder head
- (1) Instruction packet
- (4) 5/16” Guideplates
- (8) 3/8” Rocker studs

If you are missing an item or a part was received in error, please contact Trick Flow at 1-330-630-1555, Monday through Friday from 9:00 am to 5:00 pm ET.

Recommended Tools
- Shop Manual for your vehicle
- Basic mechanics tool set (SAE / Metric sockets and combination wrenches)
- 0-100 ft.-lbs. torque wrench
- Timing light, vacuum gauge, and spark plug gap tool
- 7/16”-14 tap and tap handle
- Straightedge
- Feelers gauge
- Modeling clay
- Adjustable pushrod (TFS-9000 for hydraulic roller applications; TFS-9001 for flat tappet applications)
- Solid mock up lifter

Additional Parts Required
These components are required to complete the installation of your new cylinder heads. Please refer to the Recommended Components chart on the Technical Specifications sheet for specific part numbers.
- Head gaskets
- Intake gaskets
- Exhaust gaskets
- Head bolts
- Intake bolts
- Exhaust bolts
- Moly lube
- Spark plugs
- RTV sealer
- Pushrods
- Rocker arms
- Thread locker
- Thread sealer
Installation Instructions

1) Cylinder Head Removal

Consult your shop manual for the proper cylinder head removal procedure for your vehicle. Taking notes, pictures, and even making a video of the disassembly will help you greatly when reinstalling brackets and routing vacuum lines.

NOTE: Be sure cylinder #1 is at TDC on the compression stroke and mark the distributor’s rotor position on the firewall before disassembly.

2) Prepping the Block

With the old cylinder heads removed, inspect the cylinder bores for scratches, ridges, and cracks. If everything appears to be OK, put some paper towels in the cylinders to catch loose debris as the old head gaskets are scraped off the engine block’s deck surface. Remove all traces of the gaskets and any oil or grease that may be present by wiping the surface with brake cleaner.

Check the deck surfaces for flatness by laying a straightedge across the deck lengthwise and sticking a .004” feeler gauge under it. If the feeler gauge fits anywhere under the straightedge, the block will need to be decked or head gasket failure will result.

Once the block decks have been cleaned and checked, use a 7/16”-14 tap to chase the threads in the head bolt holes. This will clean out old sealer and debris, this is extremely important for preventing leaks and torquing the heads down evenly on the block.

After cleaning the head bolt hole threads, carefully remove the paper towels from the cylinders and discard. Using new paper towels clean the cylinders and coat the cylinder walls with a thin film of engine oil to protect them from corrosion.

3) Checking Header Clearance

Place one of the new cylinder heads on a suitable work stand and install the recommended spark plugs (refer to the Recommended Components chart in the Technical specifications sheet for specific part numbers). Bolt the headers to the cylinder head and check for any interference. Repeat this procedure with the other cylinder head.

Trick Flow recommends using spark plug wires with 90 degree spark plug boots on header equipped small block Chevy engines. Now is the time to make sure the vehicle’s temperature sending unit will work with the ½”-14 NPT threaded hole in the cylinder heads. If the vehicle’s sender doesn’t fit, locate a suitable replacement or use an adapter bushing to make the sending unit work (refer to the Recommended Components chart on the Technical Specifications sheet for specific part numbers).

4) Checking Piston-to-Valve Clearance and Valvetrain Geometry

If you choose to use the stock camshaft in your engine, and it has not been moved from its factory position, you do not have to check piston-to-valve clearance. If you have an aftermarket camshaft or are reinstalling a camshaft (especially with a multi-keyway timing set), you must follow this procedure to assure safe operating clearances between your pistons and valves:

A) Rotate the crankshaft until the engine is on the compression stroke of the #1 cylinder. Place a solid mock up lifter in the lifter bore of the valve that you will be measuring. Be sure that the mock up lifter is the same height as the lifters that will be installed in the engine later.

B) Place a few 1/4” thick strips of modeling clay across the upper half of the piston. Put a light coat of oil on top of the modeling clay and the valves in the cylinder head to keep the clay and valve from sticking. Place the head gasket you will be using on the block and bolt the head on with five or six head bolts.

C) Install the rocker arm studs, guideplate, and the rocker arm for the valve you are checking (intake or exhaust). Next, set your adjustable pushrod tool to the proper length for your combination and tighten the rocker to zero lash, rotate the crankshaft at least twice, remove the cylinder head.

D) This is also a good time to verify proper pushrod length and valvetrain geometry. The procedure can be found in the bulletin titled “How to Optimize Pushrod Length for Better Performance”.

E) Gently cut the clay into slices and look for the thinnest section of the valve impression. The impression is a 3D representation of the clearance between the piston and valve. Carefully measure the thickness of the clay with a machinist’s scale or calipers. The intake valve side of the clay should have .010” or more of clearance, and the exhaust should have .080” or more of clearance.

F) When you have completed these procedures, rotate the crankshaft until the #1 piston is at TDC on the compression stroke.

NOTE: Reference the maximum recommended valve lift for the valve springs in the Technical Specifications sheet before purchasing an aftermarket camshaft.

5) Installing the New Cylinder Heads

With the block deck surfaces and cylinders clean and all checks completed, position the head gaskets on the block per the manufacturer’s markings.

Don’t be alarmed if some of the holes in the block are restricted by a smaller hole in the gasket. This is done intentionally to regulate coolant flow.

Position each cylinder head evenly on the block’s dowel pins so that each head lies flat against the gasket. Next, place hardened head bolt washers over each bolt hole. Head bolt washers are required to prevent galling of the aluminum and to get accurate torque readings. Once they are in place, place a small amount of ARP moly lube on the top of all washers.

Place thread sealer on the head bolts, and torque the head studs in the four stages shown, following the sequence shown in Figure 1 on the following page.
DO NOT START THE ENGINE IF THE TOP HALF OF THE ENGINE HAS NOT BEEN PRELUBED!

7) Reassembling the Rest of the Engine

Install as many items as you can without putting the valve covers on. This will allow you to prelube the valvetrain, which is explained in the Prelubing the Valvetrain section.

Intake Manifold Tips

Apply ¼" bead of Permatex Ultra Black RTV sealer to the intake manifold end rail surfaces. Do not use a gasket on the end rails, only the RTV sealer. Outline the water openings at the ends of the head with Ultra Black to help prevent water leaks. Apply a small amount of motor oil to the intake bolts and torque to factory specifications in the sequence shown below.

Exhaust Manifold/Header Tips

Lay your straightedge across the mating flange of the exhaust manifolds/headers to make sure they are flat. Put a small amount of motor oil on the exhaust bolts and tighten them down from the center out to the ends. This will permit the flange to be tightened evenly. After you run the engine a few times, retighten the exhaust bolts. If the bolts loosen up, the leaking exhaust gas will ruin the gasket.

NOTE: What may sound like a lifter tick is often an exhaust gas leak. Rule out exhaust leaks before tearing the intake off to replace the lifters.

8) Pre-lubing the Valvetrain

The valvetrain is now ready to be pre-lubed. Slowly pour a half quart of motor oil (per head) over the rocker arms, valve springs, and valve stems. Use an oil squirt can to get inside the valve spring and lube the valve stem and seal area. Reinstall the valve covers as soon as possible to keep contaminants out of the engine. The valve cover rails on the Super 23 cylinder heads have been raised approximately .300" to provide clearance for roller rocker arm polylocks. Adjustments to accessories that mount on or cross over the valve covers may be necessary. If you are installing centerbolt-type valve covers with standard type roller rocker arms, you will have to reduce the width of the oil control baffles by squeezing them in the center until they clear. After the valve covers are installed, reinstall the rest of the top end and accessories.

8) Break-In and Tuning

To ensure long life and trouble-free use, allow 2-4 hours of normal driving time before running the engine hard; this will break-in the valvetrain properly. If you installed a new camshaft, change the oil after 30 minutes of run time. This will help remove particles that are worn off during the break-in process.

NOTE: Trick Flow recommends the total timing be set between 36 to 38 degrees for maximum power. However, the optimal timing may vary.
Technical Specifications

Head Material: A-356-T61 Aluminum
Comb. Chamber volume: Street: 56cc
64cc CNC-profiled
72cc CNC-profiled
Intake port volume: 175cc; 195cc
Intake port dimensions: Street: 1.230” x 1.990”
Street/Strip: 1.280” x 2.090”
Intake port location: Stock; Exhaust: Stock
Intake valve diameter: Street: 1.940”
Street/Strip: 2.020”
Valve angles: Intake: 23°, Exhaust: 23°
Valve intake seat: Tungsten alloy
Intake valve intake length: 4.960”
Intake valve stem length: 11/32”
Exhaust port volume: Street: 67cc
Exhaust port volume: Street: 1.300” x 1.350”
Street/Strip: 1.350” x 1.500”
Exhaust valve diameter: Street: 1.500”
Street/Strip: 1.600”
Exhaust valve length: 4.980”
Exhaust valve stem diameter: 11/32”
Valve guide material: Manganese Bronze Alloy
Valve guide length: 2.000” intake; 2.250” exhaust
Valve guide clearance: .0012” intake; .0016” exhaust
Valve guide spacing: 1.910”
Valve seal: Viton® .500” I.D. x .700” O.D. x 11/32” stem
Valve seat angles: 37° x 45° x 52°
Valve spring pockets: 1.615”, 1.500” (Center two)
Valve spring retainers: Chromoly 7” x 1.250” O.D.
Chromoly 7” x 1.437”-1.500” O.D.
Valve stem locks: 7° stamped steel
7° + .050” machined steel
Valve springs: Option 1
1.250” O.D. single spring with damper
110 lbs. @ 1.780” installed height
300 lbs. @ 1.280” open
360 lbs. per inch rate
.520” maximum lift
Option 2
1.470” O.D. single spring with damper
118 lbs. @ 1.800” installed height
300 lbs. @ 1.280” open
360 lbs. per inch rate
.540” maximum lift
Option 3
1.460” O.D. dual spring with damper
125 lbs. @ 1.800” installed height
376 lbs. @ 1.180” open
420 lbs. per inch rate
.600” maximum lift
Guide plates: For use with 5/16” pushrods
Push rod length: Longer than stock required,
Rocker studs: ARP 3/8”-24NF x 7/16”-14 NC x 1.895”
Weight each bare: 22 lbs. each
CARB E.O Number: D-369-6 (175cc)
D-369-16 (195cc)

NOTE: For specific state emission inspection compliance, please affix the included label on or near the cylinder heads.

Replacement Cylinder Heads

TFS-3031B001 Bare, 175cc, 56cc Chamber, Perimeter bolt
TFS-3031B005 Bare, 175cc, 56cc Chamber, Center bolt
TFS-3041B002 Bare, 195cc, 62cc Chamber, Perimeter bolt
TFS-3041B005 Bare, 195cc, 62cc Chamber, Center bolt
TFS-3041B002-M64 Bare, 195cc, 64cc CNC Chamber, Perimeter bolt
TFS-3041B005-M64 Bare, 195cc, 64cc CNC Chamber, Center bolt
TFS-3041B012-M72 Bare, 195cc, 72cc CNC Chamber, Perimeter bolt
TFS-3041B014-M72 Bare, 195cc, 72cc CNC Chamber, Center bolt

Recommended Components

Head gasket: Fel Pro #7733PT-2
Fel Pro #1003, up to .060” bore
Fel Pro #1010, up to 4.155” bore
Fel-Pro #1014, 400ci w/ steam holes
Intake gasket: Fel Pro #1205, .060” thick
Fel Pro 1266, .125” thick
Exhaust gasket: Fel Pro #1404

Head bolts/studs: TFS-92000, (6pt. bolts)
ARP # 134-3601, (6pt. bolts)
ARP # 234-4301 (12pt. studs)

Rocker arms (Perimeter Bolt):
TFS-31400510 (1.5 Ratio; 3/8” stud)
TFS-31400511 (1.6 Ratio; 3/8” stud)
TFS-31590520 (1.5 Ratio; 7/16” stud)
TFS-31400521 (1.6 Ratio; 7/16” stud)

Rocker arms (Center Bolt):
TFS-31400512 (1.5 Ratio; 3/8” stud)
TFS-31400513 (1.6 Ratio; 3/8” stud)

Stud Girdles:
TFS-30400700 (3/8” stud)
TFS-30400701 (7/16” stud)

Spark plugs:
Autolite # 3924
Champion # RC9YC

Trick Flow Specialties
1248 Southeast Avenue Tallmadge, Ohio 44278
Sales: (330) 630-1555, Fax: (330) 630-5565
Web: Trickflow.com

Viton® is a registered trademark of DuPont Performance Elastomers.
How to Optimize Pushrod Length
For Better Performance

Instruction Manual

Figure 1

In an overhead valve V8 engine, the valvetrain multiplies and transfers the motion of the camshaft and lifters to the valves. The pushrods play a critical role in this transfer of motion.

Pushrod length greatly affects the efficiency of the motion transfer to the valves by altering the tip travel of the rocker arms. To provide maximum valvetrain efficiency with minimum side thrust against the valve guide, rocker arm tip travel on the valve stem should be .080" or less, as shown in Figure 1.

Measuring Pushrod Length

To determine the proper length pushrods for your application, you will need an adjustable checking pushrod, a machinist's rule, and the rocker arms to be used on the engine. If you are using roller rocker arms, a dial indicator will also be required.

As a general rule, longer pushrods will decrease rocker arm tip travel. This can be checked by marking one of the valve stem tips with bluing or a marker, then turning the engine over by hand a few times. This lets the rocker arm tip simulate a wear pattern on the valve stem tip. Next, take the rocker arm off; the amount of rocker arm tip travel will show up as a brightly colored stripe on the valve stem tip. Measure this stripe with the machinist's rule and make and test necessary pushrod length changes with the adjustable checking pushrod. If you can't get a tip travel measurement of .080" or less after trying several pushrod lengths, you will have to switch to another brand of rocker arms and start over.

When checking pushrod length with roller tip rocker arms, note the position of the roller tip on the valve stem when the valve is at one-half of its net lift. This is called half-lift centering; a dial indicator must be used to make this measurement. Ideally, the centerline of the rocker arm's roller tip should coincide with the centerline of the valve at one-half of its net lift—providing an equal amount of rocker arm tip travel on each half of the valve stem tip. A slightly off-center rocker arm tip position at half-lift is OK as long as tip travel is minimized. Refer to Figure 2.

It must be noted that using a different brand of rocker arms from those originally measured, even if they have the same ratio, could change the rocker arm tip travel (even if the same length pushrods are used). If either the rocker arms or pushrod length are changed, you must redetermine and reset pushrod length.

Taking the time to properly check pushrod length will reward you with better performance, less valvetrain wear, and reduced breakage. If you have questions about checking pushrod length or pushrod/rocker arm recommendations for your combination, contact the Trick Flow Technical Department at 1-330-630-1555, Monday through Friday from 9:00 am to 5:00 pm ET.
Ultimate Bolt-On Performance® Lifetime Warranty

Trick Flow Specialties cylinder head castings are backed by a lifetime warranty. If a cylinder head casting fails to provide the original purchaser with complete satisfaction, Trick Flow Specialties will repair or replace it free of charge — guaranteed!

Moreover, the valves, valve guides, valve seats, valve job, valve springs, valve spring retainers, valve locks, rocker arm studs, guideplates, and valve stem seals included on assembled Trick Flow Specialties cylinder heads are warranted to the original purchaser to be free from defects in materials and workmanship for a period of two years from the date of purchase. All other Trick Flow Specialties products are warranted to be free from defects in materials and workmanship for a period of 90 days. There are no mileage limitations.

Extent of Warranty

Customers who believe they have a defective product should return it to the dealer from which they purchased or ship it freight prepaid to Trick Flow Specialties along with proof of purchase and a complete description of the problem. If a thorough inspection indicates defects in materials or workmanship, our sole obligation is to repair or replace the product.

This warranty is only if the product is properly installed, subjected to normal use and service, did not fail due to owner negligence or misuse, and has not been altered or modified.

Trick Flow Specialties warranties do not cover any installation or removal costs.

Trick Flow Specialties is not liable for consequential damages for breach of contract of any warranty in excess of the purchase price of the product sold.

PROPOSITION 65 WARNING

This product may contain one or more substances or chemicals known to the state of California to cause cancer, birth defects or other reproductive harm.

TRICK FLOW SPECIALTIES
285 WEST AVE.
TALLMADGE, OHIO 44278
(330) 630-1555